Module text_embeddings.hash.canine

From CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation.

Expand source code
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date    : 2021-04-18 09:06:29
# @Author  : Chenghao Mou (mouchenghao@gmail.com)

"""From CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation."""

import numpy as np
from typing import Optional, List, Dict
from text_embeddings.hash.util import murmurhash
from text_embeddings.base import EmbeddingTokenizer
from loguru import logger


class CANINETokenizer(EmbeddingTokenizer):
    """
    A character hashing tokenizer/embedder from [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874)

    Parameters
    ----------
    hash_size : int, optional
        The embedding size of each character, by default 768
    model_input_names : Optional[List[str]], optional
        Required inputs of the downstream model, by default it uses the same names as a BERT — ["input_ids", "token_type_ids", "attention_mask"]
    special_tokens : Optional[Dict[str, np.ndarray]], optional
        Special tokens for the downstream model, by default it uses the same special tokens as a BERT — {"CLS": "[CLS]", "SEP": "[SEP]"}
    max_length : Optional[int], optional
        Maximum character length, by default 2048

    Examples
    --------
    >>> from text_embeddings.hash import CANINETokenizer
    >>> from transformers.tokenization_utils_base import *
    >>> tokenier = CANINETokenizer()
    >>> results = tokenier(text=['This is a sentence.', 'This is another sentence.'], padding=PaddingStrategy.LONGEST, truncation="longest_first", add_special_tokens=False)
    >>> assert results['input_ids'].shape == (2, 25, 768), results['input_ids'].shape
    """

    def __init__(
        self,
        hash_size: int = 768,
        model_input_names: Optional[List[str]] = None,
        special_tokens: Optional[Dict[str, np.ndarray]] = None,
        max_length: Optional[int] = 2048,
    ):
        super().__init__(model_input_names, special_tokens, max_length)
        self.hash_size = hash_size
        self.model_input_names = model_input_names
        self.special_tokens = special_tokens
        self.max_length = max_length

        if self.model_input_names is None:
            logger.warning(
                'Using default model_input_names values ["input_ids", "token_type_ids", "attention_mask"]'
            )
            self.model_input_names = ["input_ids", "token_type_ids", "attention_mask"]

    def text2embeddings(self, text: str) -> np.ndarray:
        """Convert text into an numpy array, in (sequence_length, hash_size) shape.

        Parameters
        ----------
        text : str
            Input text

        Returns
        -------
        np.ndarray
            An array in (sequence_length, hash_size) shape
        """
        if not text:
            return None

        result = np.zeros((len(text), self.hash_size))
        for i, char in enumerate(text):
            result[i] = murmurhash(char, feature_size=self.hash_size * 2)

        return result

    def create_padding_token_embedding(self, input_embeddings=None) -> np.ndarray:
        """Create a padding token embedding.

        Parameters
        ----------
        input_embeddings : [type], optional
            Embeddings already encoded, by default None

        Returns
        -------
        np.ndarray
            An embedding array in (hash_size)
        """
        return np.zeros((self.hash_size,))

Classes

class CANINETokenizer (hash_size: int = 768, model_input_names: Union[List[str], NoneType] = None, special_tokens: Union[Dict[str, numpy.ndarray], NoneType] = None, max_length: Union[int, NoneType] = 2048)

A character hashing tokenizer/embedder from CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation

Parameters

hash_size : int, optional
The embedding size of each character, by default 768
model_input_names : Optional[List[str]], optional
Required inputs of the downstream model, by default it uses the same names as a BERT — ["input_ids", "token_type_ids", "attention_mask"]
special_tokens : Optional[Dict[str, np.ndarray]], optional
Special tokens for the downstream model, by default it uses the same special tokens as a BERT — {"CLS": "[CLS]", "SEP": "[SEP]"}
max_length : Optional[int], optional
Maximum character length, by default 2048

Examples

>>> from text_embeddings.hash import CANINETokenizer
>>> from transformers.tokenization_utils_base import *
>>> tokenier = CANINETokenizer()
>>> results = tokenier(text=['This is a sentence.', 'This is another sentence.'], padding=PaddingStrategy.LONGEST, truncation="longest_first", add_special_tokens=False)
>>> assert results['input_ids'].shape == (2, 25, 768), results['input_ids'].shape
Expand source code
class CANINETokenizer(EmbeddingTokenizer):
    """
    A character hashing tokenizer/embedder from [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874)

    Parameters
    ----------
    hash_size : int, optional
        The embedding size of each character, by default 768
    model_input_names : Optional[List[str]], optional
        Required inputs of the downstream model, by default it uses the same names as a BERT — ["input_ids", "token_type_ids", "attention_mask"]
    special_tokens : Optional[Dict[str, np.ndarray]], optional
        Special tokens for the downstream model, by default it uses the same special tokens as a BERT — {"CLS": "[CLS]", "SEP": "[SEP]"}
    max_length : Optional[int], optional
        Maximum character length, by default 2048

    Examples
    --------
    >>> from text_embeddings.hash import CANINETokenizer
    >>> from transformers.tokenization_utils_base import *
    >>> tokenier = CANINETokenizer()
    >>> results = tokenier(text=['This is a sentence.', 'This is another sentence.'], padding=PaddingStrategy.LONGEST, truncation="longest_first", add_special_tokens=False)
    >>> assert results['input_ids'].shape == (2, 25, 768), results['input_ids'].shape
    """

    def __init__(
        self,
        hash_size: int = 768,
        model_input_names: Optional[List[str]] = None,
        special_tokens: Optional[Dict[str, np.ndarray]] = None,
        max_length: Optional[int] = 2048,
    ):
        super().__init__(model_input_names, special_tokens, max_length)
        self.hash_size = hash_size
        self.model_input_names = model_input_names
        self.special_tokens = special_tokens
        self.max_length = max_length

        if self.model_input_names is None:
            logger.warning(
                'Using default model_input_names values ["input_ids", "token_type_ids", "attention_mask"]'
            )
            self.model_input_names = ["input_ids", "token_type_ids", "attention_mask"]

    def text2embeddings(self, text: str) -> np.ndarray:
        """Convert text into an numpy array, in (sequence_length, hash_size) shape.

        Parameters
        ----------
        text : str
            Input text

        Returns
        -------
        np.ndarray
            An array in (sequence_length, hash_size) shape
        """
        if not text:
            return None

        result = np.zeros((len(text), self.hash_size))
        for i, char in enumerate(text):
            result[i] = murmurhash(char, feature_size=self.hash_size * 2)

        return result

    def create_padding_token_embedding(self, input_embeddings=None) -> np.ndarray:
        """Create a padding token embedding.

        Parameters
        ----------
        input_embeddings : [type], optional
            Embeddings already encoded, by default None

        Returns
        -------
        np.ndarray
            An embedding array in (hash_size)
        """
        return np.zeros((self.hash_size,))

Ancestors

  • EmbeddingTokenizer
  • transformers.tokenization_utils_base.PreTrainedTokenizerBase
  • transformers.tokenization_utils_base.SpecialTokensMixin
  • transformers.utils.hub.PushToHubMixin

Class variables

var max_model_input_sizes : Dict[str, Union[int, NoneType]]
var model_input_names : List[str]
var padding_side : str
var pretrained_init_configuration : Dict[str, Dict[str, Any]]
var pretrained_vocab_files_map : Dict[str, Dict[str, str]]
var truncation_side : str
var vocab_files_names : Dict[str, str]

Methods

def create_padding_token_embedding(self, input_embeddings=None) ‑> numpy.ndarray

Create a padding token embedding.

Parameters

input_embeddings : [type], optional
Embeddings already encoded, by default None

Returns

np.ndarray
An embedding array in (hash_size)
Expand source code
def create_padding_token_embedding(self, input_embeddings=None) -> np.ndarray:
    """Create a padding token embedding.

    Parameters
    ----------
    input_embeddings : [type], optional
        Embeddings already encoded, by default None

    Returns
    -------
    np.ndarray
        An embedding array in (hash_size)
    """
    return np.zeros((self.hash_size,))
def text2embeddings(self, text: str) ‑> numpy.ndarray

Convert text into an numpy array, in (sequence_length, hash_size) shape.

Parameters

text : str
Input text

Returns

np.ndarray
An array in (sequence_length, hash_size) shape
Expand source code
def text2embeddings(self, text: str) -> np.ndarray:
    """Convert text into an numpy array, in (sequence_length, hash_size) shape.

    Parameters
    ----------
    text : str
        Input text

    Returns
    -------
    np.ndarray
        An array in (sequence_length, hash_size) shape
    """
    if not text:
        return None

    result = np.zeros((len(text), self.hash_size))
    for i, char in enumerate(text):
        result[i] = murmurhash(char, feature_size=self.hash_size * 2)

    return result

Inherited members