Module text_embeddings.x
X is a Perceiver-based encoder model that incorporates byte hash embeddings, learned token pruning and layer wise adaptive computation (inspired from PonderNet).
Expand source code
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date    : 2021-08-19 12:47:53
# @Author  : Chenghao Mou (mouchenghao@gmail.com)
"""X is a Perceiver-based encoder model that incorporates byte hash embeddings, learned token pruning and layer wise adaptive computation (inspired from PonderNet)."""
import math
from typing import Callable
import torch
import torch.nn as nn
from torch import Tensor
from einops import repeat, rearrange
from transformers import CanineModel
class PositionalEncoding(nn.Module):
    def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000, batch_first: bool = False):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
        pe = torch.zeros(max_len, 1, d_model)
        pe[:, 0, 0::2] = torch.sin(position * div_term)
        pe[:, 0, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe)
        self.batch_first = batch_first
    def forward(self, x: Tensor) -> Tensor:
        """
        Args:
            x: Tensor, shape [seq_len, batch_size, embedding_dim]
        """
        if self.batch_first:
            x = x.transpose(1, 0)
        x = x + self.pe[:x.size(0)]
        return self.dropout(x) if not self.batch_first else self.dropout(x).transpose(0, 1)
class AttentionWrapper(nn.Module):
    def __init__(
        self,
        attention_class: Callable,
        embed_dim: int,
        num_heads: int,
        ff_dim: int,
        dropout: float,
        batch_first: bool,
        is_cross_attention: bool,
    ):
        super().__init__()
        self.is_cross_attention = is_cross_attention
        self.pre_attention_q_norm = nn.LayerNorm(embed_dim)
        self.pre_attention_kv_norm = (
            nn.LayerNorm(embed_dim) if is_cross_attention else None
        )
        self.attention = attention_class(
            embed_dim=embed_dim,
            num_heads=num_heads,
            dropout=dropout,
            batch_first=batch_first,
        )
        self.ff = nn.Sequential(
            nn.Linear(embed_dim, ff_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(ff_dim, embed_dim),
        )
    def forward(
        self,
        query: Tensor,
        key: Tensor = None,
        value: Tensor = None,
        mask: Tensor = None,
    ):
        query = self.pre_attention_q_norm(query)
        key = (
            self.pre_attention_kv_norm(key)
            if key is not None and self.pre_attention_kv_norm is not None
            else key
        )
        value = (
            self.pre_attention_kv_norm(value)
            if value is not None and self.pre_attention_kv_norm is not None
            else value
        )
        # mask is only useful for cross attention, ignore attention weights
        attn_output, *_ = (
            self.attention(query, key, value, key_padding_mask=mask)
            if self.is_cross_attention
            else self.attention(query, query, query)
        )
        output = attn_output + query
        output = self.ff(output) + output
        return output
class XLayer(nn.Module):
    def __init__(
        self,
        embed_dim: int,
        num_cross_attention_heads: int,
        num_latent_attention_heads: int,
        num_latent_layers: int,
        ff_dim: int,
        dropout: float,
        batch_first: bool,
        latent_attention: Callable,
    ):
        super().__init__()
        self.cross_attention = AttentionWrapper(
            attention_class=nn.MultiheadAttention,
            embed_dim=embed_dim,
            num_heads=num_cross_attention_heads,
            ff_dim=ff_dim,
            dropout=dropout,
            batch_first=batch_first,
            is_cross_attention=True,
        )
        # pesudo transfomer
        self.latent_attentions = nn.ModuleList(
            [
                AttentionWrapper(
                    attention_class=latent_attention,
                    embed_dim=embed_dim,
                    num_heads=num_latent_attention_heads,
                    ff_dim=ff_dim,
                    dropout=dropout,
                    batch_first=batch_first,
                    is_cross_attention=False,
                )
                for _ in range(num_latent_layers)
            ]
        )
    def forward(
        self,
        query: Tensor,
        key: Tensor = None,
        value: Tensor = None,
        mask: Tensor = None,
    ):
        o = self.cross_attention(
            query,
            key,
            value,
            mask=mask,
        )
        for attn in self.latent_attentions:
            o = attn(o)
        return o
class X(nn.Module):
    def __init__(
        self,
        num_classes: int,
        latent_dim: int,
        num_layers: int,
        embed_dim: int,
        num_cross_attention_heads: int,
        num_latent_attention_heads: int,
        num_latent_layers: int,
        ff_dim: int,
        dropout: float,
        batch_first: bool,
        max_length: int,
        latent_attention: Callable,
    ):
        super().__init__()
        self.embedding = CanineModel.from_pretrained('google/canine-s')
        self.embedding_ff = nn.Linear(768, embed_dim)
        self.layers = nn.ModuleList(
            [
                XLayer(
                    embed_dim=embed_dim,
                    num_cross_attention_heads=num_cross_attention_heads,
                    num_latent_attention_heads=num_latent_attention_heads,
                    num_latent_layers=num_latent_layers,
                    ff_dim=ff_dim,
                    dropout=dropout,
                    batch_first=batch_first,
                    latent_attention=latent_attention,
                )
                for _ in range(num_layers)
            ]
        )
        self.num_classes = num_classes
        self.latent = nn.Parameter(torch.rand((latent_dim, embed_dim)))
        self.output_layer = nn.Linear(embed_dim, self.num_classes)
        self.lambda_layer = nn.Sequential(nn.Linear(embed_dim, 1), nn.Sigmoid())
    def forward(
        self,
        **inputs
    ):
        
        mask = inputs.get("attention_mask", None)
        with torch.no_grad():
            outputs = self.embedding(**inputs)
            x = outputs.last_hidden_state
        
        x = self.embedding_ff(x)
        batch_size, *_ = x.shape
        un_halted_prob = x.new_ones((batch_size,))
        halted = x.new_zeros((batch_size,))
        latent = repeat(
            rearrange(self.latent, "N D -> 1 N D"), "1 N D -> B N D", B=batch_size
        )
        probas = []
        preds = []
        p_m = x.new_zeros((batch_size,))
        y_m = x.new_zeros((batch_size, self.num_classes))
        for i, layer in enumerate(self.layers):
            latent = layer(latent, x, x, mask)
            # calculate halting probability for current layer
            layer_lambda = (
                x.new_ones((batch_size,))
                if i == len(self.layers) - 1
                else self.lambda_layer(torch.mean(latent, dim=1))
            )
            # calculate current prediction from current layer
            layer_predictions = self.output_layer(torch.mean(latent, dim=1))
            # conditional halting probability for current layer: previously not halted * halting now
            layer_halted_prob = un_halted_prob * layer_lambda.view(-1)
            un_halted_prob = un_halted_prob * (1 - layer_lambda.view(-1))
            # Halt based on the halting probability
            sampling = torch.bernoulli(layer_lambda.reshape(-1))
            halt = sampling * (1 - halted)
            probas.append(layer_halted_prob)
            preds.append(layer_predictions)
            p_m = p_m * (1 - halt) + layer_halted_prob * halt
            y_m = y_m * repeat(
                1 - halt, "B -> B C", C=self.num_classes
            ) + layer_predictions * repeat(halt, "B -> B C", C=self.num_classes)
            halted = halted + halt
            if not self.training and halted.sum() == batch_size:
                break
        return torch.stack(probas), torch.stack(preds), p_m, y_m
class ReconstructionLoss(nn.Module):
    def __init__(self, loss_fn: Callable):
        super().__init__()
        self.loss_fn = loss_fn
    def forward(self, probas, preds, labels):
        total = preds.new_tensor(0.0)
        for layer_probas, layer_preds in zip(probas, preds):
            layer_loss = layer_probas * self.loss_fn(layer_preds, labels)
            total = total + layer_loss.mean()
        return total
class RegularizationLoss(nn.Module):
    def __init__(self, lambda_p: float, max_layers: int):
        super().__init__()
        p_g = torch.zeros((max_layers,))
        not_halted = 1.0
        for k in range(max_layers):
            p_g[k] = lambda_p * not_halted
            not_halted = not_halted * (1 - lambda_p)
        self.p_g = nn.Parameter(p_g, requires_grad=False)
        self.kl_div = nn.KLDivLoss(reduction="batchmean")
    def forward(self, probas):
        probas = probas.transpose(0, 1)
        p_g = self.p_g[None, : probas.shape[1]].expand_as(probas)
        return self.kl_div(probas.log(), p_g)
class XLoss(nn.Module):
    def __init__(self, loss_fn: Callable, lambda_p: float, max_layers: int):
        super().__init__()
        self.reconstruction_loss = ReconstructionLoss(loss_fn)
        self.regularization_loss = RegularizationLoss(lambda_p, max_layers)
    def forward(self, probas, preds, labels):
        return self.reconstruction_loss(
            probas, preds, labels
        ) + self.regularization_loss(probas)Classes
- class AttentionWrapper (attention_class: Callable, embed_dim: int, num_heads: int, ff_dim: int, dropout: float, batch_first: bool, is_cross_attention: bool)
- 
Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: to, etc.Note As per the example above, an __init__()call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. Expand source codeclass AttentionWrapper(nn.Module): def __init__( self, attention_class: Callable, embed_dim: int, num_heads: int, ff_dim: int, dropout: float, batch_first: bool, is_cross_attention: bool, ): super().__init__() self.is_cross_attention = is_cross_attention self.pre_attention_q_norm = nn.LayerNorm(embed_dim) self.pre_attention_kv_norm = ( nn.LayerNorm(embed_dim) if is_cross_attention else None ) self.attention = attention_class( embed_dim=embed_dim, num_heads=num_heads, dropout=dropout, batch_first=batch_first, ) self.ff = nn.Sequential( nn.Linear(embed_dim, ff_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(ff_dim, embed_dim), ) def forward( self, query: Tensor, key: Tensor = None, value: Tensor = None, mask: Tensor = None, ): query = self.pre_attention_q_norm(query) key = ( self.pre_attention_kv_norm(key) if key is not None and self.pre_attention_kv_norm is not None else key ) value = ( self.pre_attention_kv_norm(value) if value is not None and self.pre_attention_kv_norm is not None else value ) # mask is only useful for cross attention, ignore attention weights attn_output, *_ = ( self.attention(query, key, value, key_padding_mask=mask) if self.is_cross_attention else self.attention(query, query, query) ) output = attn_output + query output = self.ff(output) + output return outputAncestors- torch.nn.modules.module.Module
 Class variables- var dump_patches : bool
- var training : bool
 Methods- def forward(self, query: torch.Tensor, key: torch.Tensor = None, value: torch.Tensor = None, mask: torch.Tensor = None) ‑> Callable[..., Any]
- 
Defines the computation performed at every call. Should be overridden by all subclasses. Note Although the recipe for forward pass needs to be defined within this function, one should call the :class: Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source codedef forward( self, query: Tensor, key: Tensor = None, value: Tensor = None, mask: Tensor = None, ): query = self.pre_attention_q_norm(query) key = ( self.pre_attention_kv_norm(key) if key is not None and self.pre_attention_kv_norm is not None else key ) value = ( self.pre_attention_kv_norm(value) if value is not None and self.pre_attention_kv_norm is not None else value ) # mask is only useful for cross attention, ignore attention weights attn_output, *_ = ( self.attention(query, key, value, key_padding_mask=mask) if self.is_cross_attention else self.attention(query, query, query) ) output = attn_output + query output = self.ff(output) + output return output
 
- class PositionalEncoding (d_model: int, dropout: float = 0.1, max_len: int = 5000, batch_first: bool = False)
- 
Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: to, etc.Note As per the example above, an __init__()call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. Expand source codeclass PositionalEncoding(nn.Module): def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000, batch_first: bool = False): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe = torch.zeros(max_len, 1, d_model) pe[:, 0, 0::2] = torch.sin(position * div_term) pe[:, 0, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe) self.batch_first = batch_first def forward(self, x: Tensor) -> Tensor: """ Args: x: Tensor, shape [seq_len, batch_size, embedding_dim] """ if self.batch_first: x = x.transpose(1, 0) x = x + self.pe[:x.size(0)] return self.dropout(x) if not self.batch_first else self.dropout(x).transpose(0, 1)Ancestors- torch.nn.modules.module.Module
 Class variables- var dump_patches : bool
- var training : bool
 Methods- def forward(self, x: torch.Tensor) ‑> torch.Tensor
- 
Args- x
- Tensor, shape [seq_len, batch_size, embedding_dim]
 Expand source codedef forward(self, x: Tensor) -> Tensor: """ Args: x: Tensor, shape [seq_len, batch_size, embedding_dim] """ if self.batch_first: x = x.transpose(1, 0) x = x + self.pe[:x.size(0)] return self.dropout(x) if not self.batch_first else self.dropout(x).transpose(0, 1)
 
- class ReconstructionLoss (loss_fn: Callable)
- 
Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: to, etc.Note As per the example above, an __init__()call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. Expand source codeclass ReconstructionLoss(nn.Module): def __init__(self, loss_fn: Callable): super().__init__() self.loss_fn = loss_fn def forward(self, probas, preds, labels): total = preds.new_tensor(0.0) for layer_probas, layer_preds in zip(probas, preds): layer_loss = layer_probas * self.loss_fn(layer_preds, labels) total = total + layer_loss.mean() return totalAncestors- torch.nn.modules.module.Module
 Class variables- var dump_patches : bool
- var training : bool
 Methods- def forward(self, probas, preds, labels) ‑> Callable[..., Any]
- 
Defines the computation performed at every call. Should be overridden by all subclasses. Note Although the recipe for forward pass needs to be defined within this function, one should call the :class: Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source codedef forward(self, probas, preds, labels): total = preds.new_tensor(0.0) for layer_probas, layer_preds in zip(probas, preds): layer_loss = layer_probas * self.loss_fn(layer_preds, labels) total = total + layer_loss.mean() return total
 
- class RegularizationLoss (lambda_p: float, max_layers: int)
- 
Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: to, etc.Note As per the example above, an __init__()call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. Expand source codeclass RegularizationLoss(nn.Module): def __init__(self, lambda_p: float, max_layers: int): super().__init__() p_g = torch.zeros((max_layers,)) not_halted = 1.0 for k in range(max_layers): p_g[k] = lambda_p * not_halted not_halted = not_halted * (1 - lambda_p) self.p_g = nn.Parameter(p_g, requires_grad=False) self.kl_div = nn.KLDivLoss(reduction="batchmean") def forward(self, probas): probas = probas.transpose(0, 1) p_g = self.p_g[None, : probas.shape[1]].expand_as(probas) return self.kl_div(probas.log(), p_g)Ancestors- torch.nn.modules.module.Module
 Class variables- var dump_patches : bool
- var training : bool
 Methods- def forward(self, probas) ‑> Callable[..., Any]
- 
Defines the computation performed at every call. Should be overridden by all subclasses. Note Although the recipe for forward pass needs to be defined within this function, one should call the :class: Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source codedef forward(self, probas): probas = probas.transpose(0, 1) p_g = self.p_g[None, : probas.shape[1]].expand_as(probas) return self.kl_div(probas.log(), p_g)
 
- class X (num_classes: int, latent_dim: int, num_layers: int, embed_dim: int, num_cross_attention_heads: int, num_latent_attention_heads: int, num_latent_layers: int, ff_dim: int, dropout: float, batch_first: bool, max_length: int, latent_attention: Callable)
- 
Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: to, etc.Note As per the example above, an __init__()call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. Expand source codeclass X(nn.Module): def __init__( self, num_classes: int, latent_dim: int, num_layers: int, embed_dim: int, num_cross_attention_heads: int, num_latent_attention_heads: int, num_latent_layers: int, ff_dim: int, dropout: float, batch_first: bool, max_length: int, latent_attention: Callable, ): super().__init__() self.embedding = CanineModel.from_pretrained('google/canine-s') self.embedding_ff = nn.Linear(768, embed_dim) self.layers = nn.ModuleList( [ XLayer( embed_dim=embed_dim, num_cross_attention_heads=num_cross_attention_heads, num_latent_attention_heads=num_latent_attention_heads, num_latent_layers=num_latent_layers, ff_dim=ff_dim, dropout=dropout, batch_first=batch_first, latent_attention=latent_attention, ) for _ in range(num_layers) ] ) self.num_classes = num_classes self.latent = nn.Parameter(torch.rand((latent_dim, embed_dim))) self.output_layer = nn.Linear(embed_dim, self.num_classes) self.lambda_layer = nn.Sequential(nn.Linear(embed_dim, 1), nn.Sigmoid()) def forward( self, **inputs ): mask = inputs.get("attention_mask", None) with torch.no_grad(): outputs = self.embedding(**inputs) x = outputs.last_hidden_state x = self.embedding_ff(x) batch_size, *_ = x.shape un_halted_prob = x.new_ones((batch_size,)) halted = x.new_zeros((batch_size,)) latent = repeat( rearrange(self.latent, "N D -> 1 N D"), "1 N D -> B N D", B=batch_size ) probas = [] preds = [] p_m = x.new_zeros((batch_size,)) y_m = x.new_zeros((batch_size, self.num_classes)) for i, layer in enumerate(self.layers): latent = layer(latent, x, x, mask) # calculate halting probability for current layer layer_lambda = ( x.new_ones((batch_size,)) if i == len(self.layers) - 1 else self.lambda_layer(torch.mean(latent, dim=1)) ) # calculate current prediction from current layer layer_predictions = self.output_layer(torch.mean(latent, dim=1)) # conditional halting probability for current layer: previously not halted * halting now layer_halted_prob = un_halted_prob * layer_lambda.view(-1) un_halted_prob = un_halted_prob * (1 - layer_lambda.view(-1)) # Halt based on the halting probability sampling = torch.bernoulli(layer_lambda.reshape(-1)) halt = sampling * (1 - halted) probas.append(layer_halted_prob) preds.append(layer_predictions) p_m = p_m * (1 - halt) + layer_halted_prob * halt y_m = y_m * repeat( 1 - halt, "B -> B C", C=self.num_classes ) + layer_predictions * repeat(halt, "B -> B C", C=self.num_classes) halted = halted + halt if not self.training and halted.sum() == batch_size: break return torch.stack(probas), torch.stack(preds), p_m, y_mAncestors- torch.nn.modules.module.Module
 Class variables- var dump_patches : bool
- var training : bool
 Methods- def forward(self, **inputs) ‑> Callable[..., Any]
- 
Defines the computation performed at every call. Should be overridden by all subclasses. Note Although the recipe for forward pass needs to be defined within this function, one should call the :class: Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source codedef forward( self, **inputs ): mask = inputs.get("attention_mask", None) with torch.no_grad(): outputs = self.embedding(**inputs) x = outputs.last_hidden_state x = self.embedding_ff(x) batch_size, *_ = x.shape un_halted_prob = x.new_ones((batch_size,)) halted = x.new_zeros((batch_size,)) latent = repeat( rearrange(self.latent, "N D -> 1 N D"), "1 N D -> B N D", B=batch_size ) probas = [] preds = [] p_m = x.new_zeros((batch_size,)) y_m = x.new_zeros((batch_size, self.num_classes)) for i, layer in enumerate(self.layers): latent = layer(latent, x, x, mask) # calculate halting probability for current layer layer_lambda = ( x.new_ones((batch_size,)) if i == len(self.layers) - 1 else self.lambda_layer(torch.mean(latent, dim=1)) ) # calculate current prediction from current layer layer_predictions = self.output_layer(torch.mean(latent, dim=1)) # conditional halting probability for current layer: previously not halted * halting now layer_halted_prob = un_halted_prob * layer_lambda.view(-1) un_halted_prob = un_halted_prob * (1 - layer_lambda.view(-1)) # Halt based on the halting probability sampling = torch.bernoulli(layer_lambda.reshape(-1)) halt = sampling * (1 - halted) probas.append(layer_halted_prob) preds.append(layer_predictions) p_m = p_m * (1 - halt) + layer_halted_prob * halt y_m = y_m * repeat( 1 - halt, "B -> B C", C=self.num_classes ) + layer_predictions * repeat(halt, "B -> B C", C=self.num_classes) halted = halted + halt if not self.training and halted.sum() == batch_size: break return torch.stack(probas), torch.stack(preds), p_m, y_m
 
- class XLayer (embed_dim: int, num_cross_attention_heads: int, num_latent_attention_heads: int, num_latent_layers: int, ff_dim: int, dropout: float, batch_first: bool, latent_attention: Callable)
- 
Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: to, etc.Note As per the example above, an __init__()call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. Expand source codeclass XLayer(nn.Module): def __init__( self, embed_dim: int, num_cross_attention_heads: int, num_latent_attention_heads: int, num_latent_layers: int, ff_dim: int, dropout: float, batch_first: bool, latent_attention: Callable, ): super().__init__() self.cross_attention = AttentionWrapper( attention_class=nn.MultiheadAttention, embed_dim=embed_dim, num_heads=num_cross_attention_heads, ff_dim=ff_dim, dropout=dropout, batch_first=batch_first, is_cross_attention=True, ) # pesudo transfomer self.latent_attentions = nn.ModuleList( [ AttentionWrapper( attention_class=latent_attention, embed_dim=embed_dim, num_heads=num_latent_attention_heads, ff_dim=ff_dim, dropout=dropout, batch_first=batch_first, is_cross_attention=False, ) for _ in range(num_latent_layers) ] ) def forward( self, query: Tensor, key: Tensor = None, value: Tensor = None, mask: Tensor = None, ): o = self.cross_attention( query, key, value, mask=mask, ) for attn in self.latent_attentions: o = attn(o) return oAncestors- torch.nn.modules.module.Module
 Class variables- var dump_patches : bool
- var training : bool
 Methods- def forward(self, query: torch.Tensor, key: torch.Tensor = None, value: torch.Tensor = None, mask: torch.Tensor = None) ‑> Callable[..., Any]
- 
Defines the computation performed at every call. Should be overridden by all subclasses. Note Although the recipe for forward pass needs to be defined within this function, one should call the :class: Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source codedef forward( self, query: Tensor, key: Tensor = None, value: Tensor = None, mask: Tensor = None, ): o = self.cross_attention( query, key, value, mask=mask, ) for attn in self.latent_attentions: o = attn(o) return o
 
- class XLoss (loss_fn: Callable, lambda_p: float, max_layers: int)
- 
Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: to, etc.Note As per the example above, an __init__()call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. Expand source codeclass XLoss(nn.Module): def __init__(self, loss_fn: Callable, lambda_p: float, max_layers: int): super().__init__() self.reconstruction_loss = ReconstructionLoss(loss_fn) self.regularization_loss = RegularizationLoss(lambda_p, max_layers) def forward(self, probas, preds, labels): return self.reconstruction_loss( probas, preds, labels ) + self.regularization_loss(probas)Ancestors- torch.nn.modules.module.Module
 Class variables- var dump_patches : bool
- var training : bool
 Methods- def forward(self, probas, preds, labels) ‑> Callable[..., Any]
- 
Defines the computation performed at every call. Should be overridden by all subclasses. Note Although the recipe for forward pass needs to be defined within this function, one should call the :class: Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source codedef forward(self, probas, preds, labels): return self.reconstruction_loss( probas, preds, labels ) + self.regularization_loss(probas)